Turkish Journal of Field Crops

Phone:

90 232 311 26 79

Email:

contact@field-crops.org

Address:

2. Beyler İş Hanı, No: 313 Kat: 3 Konak-İzmir

INHERITANCE OF GRAIN YIELD AND ITS CORRELATION WITH YIELD COMPONENTS IN BREAD WHEAT (Triticum aestivum L.)

Jinbao YAO, Xueming YANG, Miaoping ZHOU, Dan YANG, Hongxiang MA

Abstract

The inheritance of grain yield plant-1 and its correlation with other yield components were investigated in a diallel cross of seven wheat parents during the crop season of 2011-2012. Mean square of GCA effect was 2.90 for grain yield plant-1, which was highly significant (P<0.01), indicating that additive effect played important role in the inheritance of the trait. SCA effect was also highly significant (P<0.01) for grain yield plant-1 (0.68), suggesting that the trait was also controlled by non-additive effect. The estimates of GCA showed that the best combiner for grain yield plant-1 was Ningmai 9. The additive-dominance model was partially adequate for grain yield plant-1 and it was controlled by the over dominance type of gene action. Ningmai 8 possessed maximum dominant genes, whereas Yangmai 9 had maximum recessive genes. Grain yield plant-1 might be controlled by two groups of genes and exhibited moderately high value of narrow sense heritability (h2N=69.51%). The statistical analysis revealed that grain yield plant-1 was positively and significantly correlated with tillers plant-1 (rp=0.584, rg=0.595) and number of grains spike-1 (rp=0.528, rg=0.507) at phenotypic and genotypic levels. ><0.01) for grain yield plant-1 (0.68), suggesting that the trait was also controlled by non-additive effect. The estimates of GCA showed that the best combiner for grain yield plant-1 was Ningmai 9. The additive-dominance model was partially adequate for grain yield plant-1 and it was controlled by the over dominance type of gene action. Ningmai 8 possessed maximum dominant genes, whereas Yangmai 9 had maximum recessive genes. Grain yield plant-1 might be controlled by two groups of genes and exhibited moderately high value of narrow sense heritability (h2N=69.51%). The statistical analysis revealed that grain yield plant-1 was positively and significantly correlated with tillers plant-1 (rp=0.584, rg=0.595) and number of grains spike-1 (rp=0.528, rg=0.507) at phenotypic and genotypic levels.

Keyword: diallel cross, grain yield, inheritance, Triticum aestivum L ,

Effects of Different Water Stress Levels on Biomass Yield and Agronomic Traits of Switchgrass (Panicum virgatum L.) Varieties under Semi-Arid Conditio

Erdal GONULAL, Suleyman SOYLU, Mehmet SAHIN

Abstract

A field experiment was conducted in the Wielkopolska region at the Gorzyń Research Station, Poland (52.34°N, 15.54°E) in Central Europe. The study was conducted over a 3-year period (2017, 2018, 2019) as a two-factorial design with four replications in the RCBD. The aim of the research was to determine the effect of the cultivar (‘Bolero’, ‘Tytan’) and the inoculation (Nitragina–seeds inoculation, Nitroflora I–seeds inoculation, Nitroflora II–soil inoculation, HiStick® Lupin–seeds inoculation) on plant development, seeds chemical composition and yielding of narrow-leaved lupin. The weather conditions and experimental factors significantly influenced on productivity of narrow-leaved lupin ‘Tytan’. Drought during the growing season reduced seeds and protein yields. After inoculation of HiStck the seeds yield was significantly greater by 12.4% (p < 0.01) and the protein yield after application of Nitroflora I or HiStick by 13.9% (p < 0.01) and 19.2% (p < 0.01), respectively. Correlation coefficients showed strong relations between number of pods and seeds per plant in both cultivars regardless of the inoculation variant, however the strongest relations in both cultivar were proved on HiStick treatment.
Keyword: Biological nitrogen fixation, chemical composition, legumes, protein efficiency, yielding